Renormalization group flow as optimal transport

نویسندگان

چکیده

This highly original paper relates the $e\phantom{\rule{0}{0ex}}x\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}c\phantom{\rule{0}{0ex}}t$ $r\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}l\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}z\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}n$ $g\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}p$ (ERG) $f\phantom{\rule{0}{0ex}}l\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}w$ to $o\phantom{\rule{0}{0ex}}p\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}l$ $g\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}d\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}t$ which naturally leads (previously known) interpretation of ERG as a flow that minimizes relative entropy probability distribution. provides an elegant explanation otherwise opaque features schemes and establishes clear intriguing link information theory. The intuitive picture emerges is coarse-graining RG produces this production determines itself. All these basic relations are established nonperturbatively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization Multigrid (RMG): Statistically Optimal Renormalization Group Flow and Coarse-to-Fine Monte Carlo Acceleration

New renormalization-group algorithms are developed with adaptive representations of the renormalized system which automatically express only signi cant interactions. As the amount of statistics grows, more interactions enter, thereby systematically reducing the truncation error. This allows statistically optimal calculation of thermodynamic limits, in the sense that it achieves accuracy " in ju...

متن کامل

Renormalization Group Flow Equation at Finite Density

For the linear sigma model with quarks we derive renormalization group flow equations for finite temperature and finite baryon density using the heat kernel cutoff. At zero temperature we evolve the effective potential to the Fermi momentum and compare the solutions of the full evolution equation with those in the mean field approximation. We find a first order phase transition either from a ma...

متن کامل

Renormalization Group Flow in Algebraic Holography

The remarkable scaling properties of the AdSCFT correspondence[5] have been proven extremely useful as a calculational device for the scaling behaviour of holographic pairs, known as the Holographic Renormalization Group (RG). In this communication, the aforementioned scaling properties will be studied in a somewhat different context. We’ll adopt the formalism of Local Quantum Physics[1], in te...

متن کامل

On Renormalization Group Flow In Matrix Model

The renormalization group flow recently found by Brézin and Zinn-Justin by integrating out redundant entries of the (N+1)×(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2023

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.108.025003